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A TIGHT AND EXPLICIT REPRESENTATION OF Q 

IN SPARSE QR FACTORIZATION 

Esniond G .  Ng 

Barry W. Peyton 

Abstract 

In QR factorization of a sparse mx n matrix A (rn 2 n) the orthogonal factor Q 
is often stored implicitly as a lower trapezoidal matrix H known as the Householder 
matrix. This paper presents a simple characterization of the row structure of Q, 
which could be used as the basis for a sparse data structure that can store Q 

expl ic i t ly .  The new characterization is a simple extension of a well known row- 
oriented characterization of the structure of H [9]. Hare, Johnson, Olesky, and 
van den Driessche [15] have recently provided a complete sparsity analysis of the 
QR factorization. Let U be the matrix consisting of the first n columns of Q. 
Using results from [15], we show that the data structures for H and U resulting 
from our characterizations are t ight when A is a strong Hall matrix. We also show 
that H and the lower trapezoidal part of U have the same sparsity characterization 
when A is strong Hall. We then show that this characterization can be extended 
to any weak Hall matrix that has been permuted into block vpper triangular form. 
Finally, we show that permuting to block upper triangular form never increases 
the fill incurred during the factorization. 

- v -  





1. Introduction 

Let A be an m x n sparse matrix with m 2 n and assume that A has full column rank. 

Consider the reduction of A to  upper triangular form using orthogonal factorization: 

where Q is m x rn orthogonal and R is n x n upper triangular. Since A has full column 

rank, R is nonsingular. The orthogonal matrix Q can be partitioned conformally with 

the matrix it premultiplies to  obtain 

where U is m x n and V is m x ( m  - n).  Thus, we have 

If the computation is organized so that the entries on the main diagonal of R are 

positive, the factorization in (1.2) is unique regardless of the method used to compute 

U and R, assuming that there are no round-off errors. Of course, only the first n 

columns of Q (i.e., U )  are uniquely determined, since any orthonormal basis for the 

null space of AT may serve as the last ni - n columns of &. 
For any matrix B, its i - th  row and j - th  column are denoted respectively by B;,, 

and B*,j. The (i,j)-element of B is written as Bij .  We use Struct(B)  to denote the 

structure of B: 
Struct (B)  := { ( i , j )  I B,,j # 0). 

Similarly, for any vector x, we let 

Struct(z) := {i 12; # 0). 

Let M ( A )  contain every full-rank m x n matrix B for which Struct(B)  = Struct(A).  
We define Q(A) by 

Q(A) := u Siruct(QA),  
B E M ( A )  

where 

is the QR factorization of B.  The sets U(A) and R ( A )  are defined in similar fashion. 
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Note that these sets are the smallest sets such that Struct (QB)  Q ( A ) ,  S t rvc t (UB)  C_ 

U ( A ) ,  and Strzlct(RB) R ( A )  for any matrix B E M ( A ) .  Thus, the three sets 

Q(A), U ( A )  and R ( A )  are the ideal target of any efficient storage scheme or data  

structure for storing the nonzeros of the factor matrices. 

Hare, Johnson, Olesky, and van den Driessche [15] have given a complete char- 

acterization of U ( A ) .  After first proving that a certain set of ordered pairs must be 

excluded from U(A), they then show that for any ordered pair (i,j) not in the excluded 

set, there exists a matrix B E M ( A )  for which U$ # 0. Using a different approach, 

Pothen [19] further proves that there exists a matrix B E M ( A )  for which UG 7" 0 

for every ordered pair ( i , j )  E U ( A ) .  Hare et al. also show that =(A)  can be obtained 

by forming symbolically the product of U T  and A based on U(A) and S t r 7 4 A ) ;  we 

refer t o  the product as the symbolic product of UT and A. 

Earlier work in this area was primarily concerned with efficient storage of R and 

t? for use in sparse matrix computations [1,7,9,11]. In this setting Q is stored as 

a sequence of Householder transformations or Givens rotations. For definiteness we 

consider Householder transformations in this paper. The orthogonal matrix Q is stored 

implicitly in the Householder matrix H ,  which is an rn x n lower trapezoidal matrix, 

each column of which contains a Householder vector used to  construct a Householder 

transformation. (A more detailed description of the Householder matrix H is given 

in Section 3.1. Note also that we will be using the pattern "(A), which is defined 

in the manner Q ( A ) ,  U(A), and R ( A )  were defined.) In [ll], George and Ng gave 

a fast symbolic factorization algorithm for generating (from Struct (A))  zero-nonzero 

patterns %(A) and Z(A)  such that "(A) C: R(A) and 'R(A) 5 =(A) .  George, Liu, 

and Ng 191 introduced a simple characterization of %(A),  which is based on Z(A). 
Using this characterization, they presented row-oriented data  structures that can he 

used to store the nonzero entries of H and R. There are circumstances, however, under 

which this data  structure is not tight: i.e., circurustances under which " ( A )  c %(A) 

and/or R ( A )  C E(A). 

In this paper, we use the results in [15] t o  extend the results and techniques intro- 

duced in [9] in two different ways. First, we modify the row-oriented characterization 

of %(A) in [9] to  obtain a row-oriented characterization of a set G(A), which has the 

property that Q(A) 5 G(A). Using G(A), the row-oriented data  structure for H 
described in [9] can be extended to provide a data  structure for storing Q explicitly. 
Note that it is trivial to obtain U ( A )  from G(A) so that U ( A )  C D(A) .  Second, 

we give sufficient conditions under which set equalities are achieved. That is, we give 

conditions under which R ( A )  II= Z(A) ,  U ( A )  = U ( A ) ,  and "(A) = R ( A ) .  When- 

ever these sets are equal, the data structures based on X ( A ) ,  U(A) ,  and G(A) are 

therefore tight. 
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As we shall see in Section 2, A is a Hull matrix (defined n Section 2.1) if it is a 

full-rank matrix; consequently, Hall matrices play a key role throughout this paper, 

along with a subclass known as strong Hall matrices. After presenting background 

material for Hall and strong Hall matrices, Section 2 reviews the characterizations of 

U ( A )  and R ( A )  presented in [15], with special emphasis on the role played by sets 

of so-called Hall columns and Hall rows. In Section 3, after reviewing some material 

in 191, we modify the characterization of R ( A )  in [9] to  obtain a characterization of 

&(A). Coleman et al. [l] have shown that when A is a strong Hall matrix, R ( A )  and 

R ( A )  are identical, where X ( A )  is generated using one of the symbolic factorization 

procedures in [7,9,11]. We use the results in [15] to  show that the set %(A) generated 

by the symbolic factorization procedure in [9,11] is identical to %(A) when A is strong 

Hall. We further show that the set U(A)  described in Section 3 is the same as M(A) 
for any strong Hall matrix A. Since the characterization of U(A) and R ( A )  in [15] 

applies to an arbitrary full-rank Hall matrix with the columns permuted in any order, 

it is natural t o  consider whether or not the new results in Section 3 can be extended to  

obtain row-oriented characterizations of %(A) ,  U ( A ) ,  and R ( A )  for any such matrix. 

We suspect that there is no way to  do so. 

Coleman et al. [I] have shown however that when a Hall matrix A is permuted to  a 

particular block upper triangular form, the zero-nonzero pattern X(A) in [7,9,11] for 

R (obtained by applying symbolic Givens rotations or Householder transformations to 

A )  is again identical to %(A). Let 2 be the matrix A after it has been permuted into 

block upper triangular form, and let 

- 
- 

be the QR factorization of 2. Moreover let be the matrix consisting of the first 

n columns of 0. In Section 4, again using the results in [15], we extend the results 

in Section 3 to obtain row-oriented characterizations of U(i), %(A), and "(2). We 

further show that if the column ordering of 2 is consistent with that of A (consistent 

in a sense defined in Section 4), then for every nonzero entry in 6 (k, g), the cor- 

responding permuted entry in U (R,  H )  is also nonzero. In consequence, permuting 

a Hall matrix to  block upper triangular form permits the use of clean, simple, tight 

data  structures for U ,  H ,  and R, while maintaining or actually lowering the number 

of nonzero entries in the factors. Some concluding remarks are provided in Section 5. 

- A  .. 
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2. A recent sparsity analysis of QR factorization 

Recently, Hare et al. [15] have provided a characterization of the sparsity patterns U ( A )  

and =(A)  for any Hall matrix A having full column rank. After providing background 

material on Hall matrices and so-called Hall rows and Hull columns, we summarize the 

main results from their paper, which will be used extensively in later sections of this 

paper. 

2.1. Hall matrices 

An m x n matrix A ,  with m 2. n,  is a Hall matrix if every m x k submatrix, 1 _< k 5 n, 

has at least k nonzero rows. The matrix A is a strong Hall matrix if every rn x IC 
submatrix, 1 5 k < 112, has a t  least E + 1 nonzero rows, Note that k < rn in the second 

definition because the number of nonzero rows cannot exceed k when k = m = n. The 

concept of Hall and strong Hall matrices apparently was first introduced by Coleman 

et al. in [l] when they were investigating the structure of R obtained in the reduction 

of A to upper triangular form using Givens rotations. Clearly, if A is strong Hall, then 

it is also Hall. We will refer to  any Hall matrix that is not strong Hall as a weak Hall 

matrix. 

The following lemma is a direct consequence of a result due t o  Hall [14] on finding 

a distinct representative member from each set in a collection of subsets. It says that 

the rows of a Hall matrix can always be permuted so that the entries on the diagonal 

of the permuted matrix are all nonzero. The permuted matrix is then said t o  possess 

a zero-free diagonal. For further details consult [4,18]. 

Lemma 2.1 (Hall [14]). There exists a permutation matrix P such that  P A  has a 

zero-free diagonal i f  and only if A is a Hall matrix. 

In the previous section we assumed that A has full column rank. ,4s we shall see 

in subsequent sections, this paper deals primarily with the zero-nonzero structure of 

matrices. It is therefore sufficient if the following weakened condition holds true for 

the matrix A: Given S t r w t ( A ) ,  there exists an assignment of numerical values to  the 

nonzero positions of the matrix so that the matrix has full numerical rank and hence 

has a unique Q R  factorization. Thus,  it makes more sense to  assume that  the structure 

of A has full column rank. We define the structural rank of A as the maximum 

number of linearly independent columns in B ,  over all rn x n matrices B for which 

S t r u c t ( B )  = Struc t (A) .  Clearly, if the m x n matrix A has full column rank (Le., 

rank n) ,  its structural rank is also n. The next result, relating the structural rank of a 

matrix to  the Hall property, follows easily from similar results for square matrices [4,12] 

and the fact that  the column rank and row rank of A are the same. 
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Corollary 2.2. An m x n matrix A, m 2 n, has structural rank n if atid only if it is 
a Hall matrix. 

Based on Corollary 2.2, we can relax our assumption that A has full numerical rank; 

we can consider Hall matrices throughout the rest of the paper. 

2.2. Hall sets 

One of the key contributions of Hare et al. [15] is their recognition of the subtle interplay 

of sparsity and column orthogonality in U when A is a weak Hall matrix. To deal with 

this issue they introduced the notion of Hall sets. 1,et J be any subset of the column 

indices {1,2, .  . . , n} ,  and let A[J]  denote the set of columns A,,j where j E J .  A Hall 

set of size k in A[J ]  is a set of IC columns from A[J] such that the m x k matrix formed 

by these columns has exactly E nonzero rows. It is easy to show that the union of two 

distinct Hall sets from A[J] is also a Hall set in A[J]. It follows that there is a unique 

Hall set of maximum cardinality for any given subset of columns A [ J ] .  However, when 

A is a strong Hall matrix, clearly the Hall set of maximum cardinality is empty for any 

subset of columns A[J] .  

For convenience, let A[j]  be the set containing the first j columns of A;  i.e., A[j] = 
A[J] ,  where J = {1,2, .  . . , j } ,  1 5 j _< n. Playing a key role in [15] is the maximum 

cardinality Hall set of A[j], which shall be denoted by Sb1. The set containing the 

columns. Similarly, the row index set for the nonzero rows associated with dJ1, denoted 

by SE1, will be referred to as the set of Hull vows. If the matrix A has a zero-free 

diagonal, then it is easy to  see that 

column indices of the IIdl  set, denoted by S ; ,  1 1  will be referred to as a set of Hull 

To simplify notation we will also use A[ j ]  to denote the ~ncatriz formed by the columns 

in the set A[j]. The (s,-t)-element of the rik x j matrix A[j]  will be denoted by A:{. 

2.3. Characterizations of U ( A )  and R ( A )  

To determine the sparsity pattern U(A) ,  Hare et al. found it most useful to consider 

QR factorization obtained via the Gram-Schmidt orthogonalization procedure. As a 

natural consequence they examine the sparsity pattern U ( A )  column by column. 

Hare et al. associate a bipartite graph BIk] = ( Idk] ,  Clk], E [ k ] )  with each submatrix 

A [ k ] .  This bipartite graph BLk] describes the zero-nonzero pattern of A [ k ]  with the 

Hall rows SE-'] and Hall columns removed. More specifically, the graph B[k]  is 
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defined as follows: 

Cfkl := {c j  I 1 2 j 5 IC and j @ SF-']}, 

12[""] := {r;  I 1 5 i 5 m,i 4 Sfik-'] and 3 cj E dk] such that AI:] # 0}, 

Now, define a set of row indices Pik] by 

Note that F['l, SE-'], and {i I T;  E Idk]}  partition the row indices {1 ,2 , .  ..,rn} into 

three sets. The set {i I r; E Illk]} is further partitioned into two sets as follows. Let 

Illk] contain the row indices i for which T ;  E Idk] and there exists no path in Bik] 

from ck to  r;; let contain the row indices i for which r; E Rik1 and there exists 

a path in from Ck to r;.  That is, dk] contains the row vertices in dk] that are 

disconnected from the last column vertex ck, while PIk] contains the row vertices in 

that are connected by a p t h  to ck. Theorem 2.3 states that  three of the four 

sets in this partition of {1,2,. . ., m} contain every row index 1 5 i 5 m for which 

( i , L )  4 U ( A ) ,  i.e., every row index i for which U t k  is necessarily zero for any matrix 

B E M(A) .  A proof can be found in [15]. 

Theorem 2.3 (Hare et al. [15]). Let A he an rn x n Hall matrix with rn 2 n. For 

1 5 L 5 n, we have (i, I C )  U ( A )  i f  and only i f i  E F [ ~ I  u sE-'] u ~ i k l .  

Theorem 2.3 places each row index i for which ( i , L )  4 U ( A )  into one of three 

categories. First, observe that if i E F@], then A!! = 0 for 1 5 j 5 I C ,  and thus 

every entry Ai,k of A for which i E lies to  the left of the envelope (or front) of 

A.  It follows from the Gram-Schmidt process that U,,k is a linear combination of the 

columns of A[k]; hence we have uj,k = 0 for i E F[kl, as the theorem asserts. 

Second, consider i E SF-']. The Gram-Schmidt process implies that U,,k must be 

orthogonal to every column of A[k - 11; in particular, it is orthogonal to  the columns in 

the Hall set S[k-'] .  Now the columns in SIk-'] span a subspace of dimension ISR 
and for every vector 3: in this space we have 2; = 0 for i ,!$-'I. In consequence, any 

vector y such that y; # 0 for some i E SjZk-'] cannot be orthogonal to  every vector in 

this space. Thus, u i , k  = 0 for i E as the theorem states. 'This is perhaps the 

key insight in Hare et al. [15]. 

Finally, we make a few observations for i E D [ k ] .  We will not outline the argument 

that (i, I C )  4 U ( A )  as we did for the previous two cases. The argument is longer and 

more technical, and we will look at a simplified version of this argument in Section 3.4; 
thus we refer the reader to [15] for these details. Nonetheless, well-known sparsity 

[k-l l  I, 
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results for Cholesky factorization can be used to  suggest why (i, k) U ( A ) .  Let L be 

the Cholesky factor of some symmetric positive definite matrix B ,  and suppose L,,t is 

a “ s t r ~ c t u r a l ~ ~  zero entry in the factor, with s > t .  It is well known that  this zero entry 

is “caused” by lack of a path connecting the vertices e, and et in the graph of B and 

passing through vertices e, ,  where T < t [8]. The absence of paths from T ;  to  Ck in 

for orthogonal factorization is analogous to  this absence of paths from e,  to  ct in the 

graph of B for Cholesky factorization. It is lack of structural and numerical symmetry 

in orthogonal factorization that complicates the argument. 

Theorem 2.3 says that the only possible nonzero entries in column k of U are the 

entries vi,$, where i E PI‘]. Indeed Hare et al. show that for each i E PIk], there exists 

a matrix B E M ( A )  for which U s  # 0, and consequently ( i , k )  E U ( A )  if and only 

if i E Pik]. Using a different approach, Pothen [19] proves that there exists a matrix 

B E M ( A )  such that U t k  # 0 for every ( i ,  k) E U(A). 
In addition to the analysis for U ( A ) ,  Hare, et al. also provide the following charac- 

terization of R ( A ) .  

Theorem 2.4 (Hare et al. [15]). Let A be an m x 9~ Hall matrix with m 2 n. The 

sparsity pattern R ( A )  can be obtained by forming the symbolic product of UT and 

A based on U ( A )  and StTuct(A) respectively. 

3. Row-oriented characterization of Q(A) for strong Hall matrices 

For any sparse matrix factorization, it is desirable to  know the sparsity structure of each 

factor in advance so that space can be pre-allocated for storing the nonzeros. The goal 

of a symbolic factorization is to  predict from Struct(A) the sparsity structures of each 

factor. For sparse QR factorization, we use G(A), a(A), %(A),  and %(A) to  denote 

respectively the sparsity patterns of Q, U ,  H ,  and R predicted by any specific symbolic 

factorization or other symbolic procedure. Throughout we will follow the convention of 

denoting any matrix with sparsity pattern G ( A ) ,  a(A), %(A), and %(A) as g, u, 
H ,  and ‘Tfz, respectively. We introduce this convention because our symbolic procedure 

in Section 3.3 is most naturally expressed in terms of matrix operation (specifically, 

matrix products). Consequently, to prove our results we need matrix “representatives” 

of patterns generated by symbolic procedures. 

As suggested by the results reviewed in the last section, straightforward symbolic 

procedures for analyzing sparsity in Q R  factorization, such as those in [9,10,11], do not 

always exclude positions (i, k), i E SE-’], from the patterns %(A) or n ( A )  that  they 

create. Furthermore, we know of no simple fix for this problem. In consequence, the 

data  structures based on X ( A )  and n ( A )  generally are not tight. One obvious way to  

avoid this problem is to restrict A to those Hall matrices for which SEI = SFJ = 0 for 

- 
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1 5 I 5 n - 1. This is precisely what we do in this section: we demonstrate that  the 

zero-nonzero pattern a(A) generated by a particular symbolic factorization procedure 

is identical to  U ( A )  when the rnatriz A to which the symbolic factorization procedure 

is applied is strong Hall. 

Throughout this section we will be working with QR factorization computed via 

Householder reductions. The Householder rnatriz H generated by this process stores Q 

implicitly, and as a result our symbolic procedure is somewhat complicated, involviiig 

the symbolic product of the entire sequence of Householder transformations. Taking 

this approach however enables us to  work with and extend the results introduced in 

George et al. [9] and also to establish the close relationship between the sparsity patterns 

"(A)  and U ( A ) .  
This section is organized as follows. Section 3.1 briefly reviews Householder reduc- 

tions and needed background material from [9]. Section 3.2 introduces a generalized 

elimination forest, which includes vertices n + 1, n + 2, . . , m so that all the columns of 

Q can be included in our analysis. Section 3.3 provides row-oriented characterizations 

of two sets i;?(A) and g'(A), both of which are simple extensions of the characterization 

of %(A) in [SI. Finally, we show in Section 3.4 that U(A)  = U(A) and %(A) = "(A).  

3.1. Background 

The factorization in (1.1) can be obtained using Householder transformations [13]. The 

matrix A is reduced to upper triangular form by a sequence of Householder reductions: 

Since each Householder transformation Hk is symmetric and orthogonal, the orthogo- 

nal matrix Q is then expressed as 

Q =I H l H 2 . .  . H , .  

Let I ,  denote the s x s identity matrix. Each Householder transformation Hk has the 

form I ,  - hkhz for some rn-vector hk of the form 

where (Yk is a scalar, wk is an (rn - k)-vector, and the first k - 1 entries of hk are 

zero. (For consistency of notation, we include H ,  in all cases, even though h: = 
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[ 0 CY, ] when m = n.) The vector h k  is often referred t o  as a HousehoZder vector. 

The orthogonal factor Q can therefore be represented implicitly by the rn x n lower 

trapezoidal matrix H :  

H =  [ hl h2 ... h , ] ,  

which is referred to as the Householder matrix. 

We now impose two more assumptions on the Hall matrix A.  It follows from 

Lemma 2.1 that there exists a row permutation P such that P A  has a zero-free diag- 

onal. Since 

P A =  PQ [ 3, 
the only effect permuting the rows of A has on Q and R is to  permute the rows of Q. 

That  is, the sparsity patterns of Q and R remain essentially unchanged when the rows 

of A are permuted. Consequently we can assume without loss of generality that A has 

a zero-free diagonal. We also assume throughout this section that A is a strong Hall 

matrix. We turn our attention to  weak Hall matrices in Section 4. 
In [ll], George and Ng presented an efficient symbolic factorization algorithm for 

generating, solely from Struct (A) ,  two pattern sets %(A) and X ( A )  that  have the 

following properties: Struc t (H)  C %(A) and Struct(R) E %(A). The symbolic fac- 

torization algorithm is based on the following simple observation. Consider applying 

H I  to  A. It is easy to  see that S t~uc t ( (H1A)~ , , )  = Strucl(Ai, ,) ,  if -441 = 0; oth- 

erwise, S t ~ u c t ( ( H 1 A ) ~ , , )  = UAk,IfO Struct(Ak,,). The result can be applied to H 1 A  

recursively to  obtain R ( A )  and R ( A ) .  The “row-merging” process is the key in an 

efficient implementation of the symbolic factorization procedure. Since the symbolic 

procedure does not take numerical values or Hall sets into account, we can conclude 

that 

Struct(H) C “ ( A )  %(A) 

and 

Struct(R) C R ( A )  C %(A). 

George et al. [9] then obtained the following simple row-oriented characterization 

of %(A). Consider an upper triangular matrix x. (Recall that  Struct(X)  = R(A).) 
For 1 5 k 5 n, if Struct(&,,) # 0, then we define p ( k )  by 

otherwise, we let p(IC) = IC. Thus, if p ( k )  > k, then p ( k )  is the column index of the 

first off-diagonal nonzero entry in row k of x. Since A is strong Hall, it follows from 
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results in Coleman et al. [l] that S t ruc t (R)  = S t ~ u c t ( X )  = Struc t (LT) ,  where L is 

the Cholesky factor of ATA. Thus p is the parent function of the elinzination foreest 

associated with L ,  R and [16,17,21]. The elimination forest may consist of one or 

more trees. When ATA is irreducible, the elimination forest has exactly one tree. For 

each tree, there is exactly one node T for which p ( ~ )  = T ,  and it is called the root of 

the tree. 

For 1 5 i 5 rn, if row i of A is nonzero, then we let f ( i )  be the column index of 

the first nonzero in that row: 

f ( i )  := min{j I A ; j  # 0); 

otherwise, we let f(i) = i. Note that f ( i )  5 i for 1 5 i 5 n because of the zero-free 

diagonal in A. Moreover, f(i) _< n for n + 1 5 i _< m if and only if row i is nonzero. 

It is straightforward to show that if row i of A is zero (i.e., f ( i )  > n) ,  then row i in 

both H and ?? must be zero; this result follows from the way in which Householder 

transformations are constructed. For any nonzero row i of A,  Theorem 3.1 provides a 

characterization of Struct(H;, ,)  in terms of f  and p. 

Theorem 3.1 (George et al. [SI). Let A be a strong Ifall matrix with a zero-free 

diagonal, and asslime that A;,* is nonzero. Then the column indices of the nonzero 

entries in zi,* are given by 

where l(i) is the first node encountered along the path from f(i) t o  the root of i ts  

elimination tree for which one of the following two conditions holds: 

1 .  t(i) = i (in which case 1 5 i 5 n), or 

2. p ( t ( i ) )  = t ( i ) .  

Theorem 3.1 presents a row-oriented characterization of R(A). (Recall again that 

Strucl(B-)  = R(A).) Proving our main results in Section 3.3 requires additional 

insight into the column structure of H ,  as provided by the following two results. 

(Lemma 3.2 holds even when A is a weak Hall matrix.) 

Lemma 3.2. Let A be a strong Hall ma.trix with a zero-free diagonal. 

following two statements hold true: 

Then the 

1. Str.uct(Z,,k) - {k} 5 S t r u c t ( ~ , , , ( k ) ) ,  and 

2. Struct (A, ,k)  - (1 ,2 , .  . ., k - 1) Struct(H,,k). 
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Proof: Consider the first statement. There is nothing to  prove if k = p ( k )  or 

Struct(H,,k) - {k} = 8. Assume therefore that k # p ( k )  and Struct(H,,k) - {k} # 
8. Choose i E Struct(H,,k) - {k}. It follows that k E Struct(H+); moreover, by 

Theorem 3.1, Struct(Hi,*) is given by 

where p ( k )  5 t ( k ) .  
verified. 

Consequently, i E S t r u ~ t ( H , , ~ ( ~ ) ) ,  and the first statement is 

Turning our attention now to the second statement, we follow the approach in [ll] 

and consider the first Householder reduction step H1A. For convenience we write A 
and H I  as 

[:I- A = [ [  z ]  , H1 = I ,  - hhT, where h = 

By construction [10,13], to is some appropriate multiple of u chosen along with cy so 

that H I A  has the form 

H I A =  [ * "'1. o c  
Because Z*J is chosen so that Struct(H,,1) C Struct(H,,1), it then follows that 

as required. By direct computation we have 

C = B - CYWV' - U J W ~ B .  

Assuming no numerical cancellation, it follows that Struct(B)  C Struct(C).  Applying 

the argument recursively t o  C verifies that the second statement is true. 1 

Lemma 3.3. Let A be a strong Hall matrix with a zero-free diagonal. Then 

S t fuc t (H, ,k )  - {k} # 0, for 1 5 k 5 n - 1. 

Proof: Let desc(k)  be the set containing the descendants of node k in the elimination 

forest given by p. (Note that k E desc(k) . )  Now choose 1 5 IC 5 n - 1. By recursive 
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application of Lemma 3.2 to  the descendants of k, it follows that 

Since A is strong Hall, the left hand side of (3.1) must be nonempty, thereby proving 

the result. 

3.2. Generalized elimination forest 

The nodes in the elimination forest are labeled from 1 t o  n. To account for all the 

columns of Q in our new results, we will “expand” the elimination forest p to include 

nodes n + 1, n + 2, . . ., m. Consider the root T of a tree in the elimination forest (i.e., 

p ( ~ )  = T ) .  Since A is strong Hall, it follows from Lemma 3.3 that  S b r u ~ t ( H * , ~ )  - { T }  # 
8. Suppose that the row indices of Struct(N,,,) are given by 

il < i2 < < i,, 

where p 2 2. Clearly il = r and i, 5 m. Furthermore, i2 > n; otherwise, the zel-o-free 

diagonal in A and the row-merging process in [ll] would imply that x,,;, # 0, which 

contradicts the fact that  T is the root of a tree. 

For 1 5 s < p ,  we define $4i8) = iip+1. For s = p ,  We define $,(i,) = i,. Thus, we 

view the ordered set Struct(f;i;,,) as a chain of which $, is the parent function. There 

is such a chain for each tree in the elimination forest. We now prove that these chains 

are disjoint. 

Lemma 3.4. Let r and T‘ be two distinct roots in the elimination forest. Then 

Strucl(H*,,)  fl stTuct(R*,rt) = 0. 

Proof: Without loss of generality, we may assume that T < T‘. By way of con- 

tradiction, assume Struct(H,,,) n St~uct(H,,,,) # 0, and choose i E StTuCt(H*,r) 17 
Struct (H, , , t ) .  It follows that T ,  T‘ E Struct(H;,,),  whence by Theorem 3.1, Strucl(Hj,,) 
is given by 

{ f(4 7 p ( f W  7 7 7 P(T) 7 * - - 7 T I  , . 7 t(i) 1 7 

with f ( i )  5 T < p ( r )  5 r’ 5 t(i). But this contradicts our assumption that T and r1 

are both roots, thereby proving the result. 

Since the chains constructed above are disjoint, we can omit the subscript T from the 

function $. Furthermore, node k will not appear in one of these chains if and only if 

row b of A is zero. Our assumption of a zero-free diagonal ensures that this condition 
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can be met only when n < k 5 m. For each node k satisfying this condition, we define 

Combining p and $, we now define a new tree structure 9, which we will call the 

+(k) = k. 

generalized elimination forest: 

p ( k )  

$(k) , for sa+ 15 C 5 m. 

, for 1 5 k F. n and p ( k )  # C, 
$ ( E )  , for 1 2  k 5 n and p ( k )  = k, 

3.3. Characterization of $?(A) 

Following the approach in [9], we now wish to determine a sparsity pattern Q(A)  such 

that G(A) contains Q(A). This can be achieved by forming the symbolic product of 

HI,  HZ, . . ., H ,  based on the sparsity patterns Struct(H;),  1 5 i 5 n, provided by 

Theorem 3.1 and Lemma 3.2. Toward that end we write each matrix Hi as 

- -  - 

- -T - 
Hi = I ,  - h;hi , with = [ 1 , 

- 
wa 

where Cr # 0 (by construction) and ?is; is an ( m  - i)-vector. We also introduce the 

following sequence of m x m matrices: 

Moreover we define 8 and Q(A)  by 8 := @) and G(A) := Struct(G). Note that 
we have 

Struct(Q) 5 Q(A)  5 Struct(Q ---(I) ) - - Struct(g) .  

--(k) = e j  and $k) = e;, We leave it for the reader to verify that for 1 5 j 5 k - 1, Q,,j J** 

where ej is the j - t h  column of the m x m identity matrix: this follows easily from 

the form of Hi’s that  are multiplied together to  obtain $k). This observation ensures 

that the following definition, which is crucial to the induction argument in the following 

proof, is a meaningful construction. For k 5 i 5 m, we define f k ( i )  by 

- 
In other words, fk(i) is the index of the “first Householder vector” h, used in forming 

the product = HkHk+l . . , H ,  that has a nonzero entry in the i-th position. Note 

tha t  it follows from Theorem 3.1 that fl(i) = f(i) for 1 L: i 5 m. 
The next result provides a row-oriented characterization of the sparsity structure 

-- I 
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of each matrix $k), 1 5 E _< n. 

Theorem 3.5. Let A be a strong Hall matrix with a zero-free diagonal. 

1 5  k 5 n and k 5 i s  m, 

Then for 

where i ( i )  is the root of the tree in the generalized elimination forest that contains 

fk(i). 

Proof: We prove the result by induction on E ,  where k = n, n - 1 , .  . ., 1. 

For the base step k = n we have 

-T 
(Following our convention in Section 3.1, h, = [ 0 li., ] whenever m = n, in which 

case Gn is a null vector.) It is trivial to  verify from this expression for that  the 

result holds for k = n. 
- t k )  Assume that the result holds for every a''), k < j 5 11,  and consider Q . By 

definition, 
-(k) - --- - - --- - - - (k+l )  
Q - HkIIk+l . . . H n  = HkQ . 

As we observed in the paragraph preceding this theorem, has the following form 

By direct computation we have 

By Lemma 3.3,GTk # 0, and by the symbolic factorization procedure [ll], Ciyk # 0 also. 

where k 5 i 5 m and i e S i ! T U C f ( H , , k ) .  It follows from First, consider a row 
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-(k) - -(k+l) 
(3.2) that  Q;,* - Q;,, , and hence 

Moreover, since fk(i) = fk+l ( i ) ,  it follows directly from the induction hypothesis that  
the result holds for the row -tk) Qi,, . 

Now consider a row -+k) Q + ,  where i E Struct(H,,k). We make the following two 

observations. First, from (3.2) we see that each row g!,:) is computed by accumulating 

into the original row vector ?$?*) a nonzero multiple of each row vector g)::’), where 

j E Struct(N,,k) - { I C } .  Second, also from (3.2) we see that g$! # 0. Thus we can 

write 

To complete the argument, we next consider the row structure set S t r u c t ( ~ ~ ~ ” ) .  
We first show that fk+l(i) = cp(k) as follows. Lemma 3.2 states that  Struct(H,,k) - 
{k} 5 Struct(H,,,(k)), from which it follows that  fk+l(i) 5 cp(IC) .  Since f f ; , k  # 0 and 

Hi,wp(k) # 0, by Theorem 3.1, zi,j = 0 for k < j < ~ ( k ) .  From the definition of fk+l(i), 

we see that indeed fk+ l ( i )  = cp(k), and therefore by the induction hypothesis we have 

- 

S t r u c t ( g i ( y ’ )  = { cp(k) , cp(cp(k)) , . . . , i(i) } . (3.4) 

From (3.4), we see that Struct(g$:’)) is precisely the same for every i E Struct(H,,k). 

This fact, along with (3.3), implies that 

The result follows from (3.5) and the fact that  fk(i) = I C .  

The next theorem is a direct consequence of Theorem 3.1, Theorem 3.5, and the 

fact that  f( i)  = fi(i), 15 i 5 rn. 

Theorem 3.6. Let A be a strong Hall matrix with a zero-free diagonal and denote 

the matrix consisting of the first n columns o f Q  by u. 
(a) Struct(Q) C Q(A) E Sttuct(Q),  and for 1 5 i 5 m, 

where cp( i( i)) = i( i). 
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(b)  Struct(U) C_ U ( A )  Struct(U),  and for 1 5 i 5 rn, 

where p ( t ( i ) )  = t(i). 

(c) The lower trapezoidal part  of u and the lower trapezoidal part  of have the 

same structure. That is, 

3.4. Equivalence of U(A) and G(A) 

When A is a strong Wall matrix, the results in Coleman et  al. [l] showed that the 

pattern %(A) generated in George and Ng [ll] is identical to R ( A ) .  In this section, 

we provide arguments to  show that %(A) = %(A)  and U ( A )  = U ( A ) .  We again 

assume that  A is a strong Hall matrix with a zero-free diagonal. 

Since we already know that these sparsity patterns are adequate (i.e., "(A)  5 
%(A) and U ( A )  C U ( A ) ) ,  it suffices t o  show that R ( A )  C_ W ( A )  and U(A)  C U(A). 
Toward that end, choose ( i , k )  $! U(A). Since A is a strong Hall matrix, we have 

= S!-l1 = 0. Consequently, the following two results suffice to show that 

- 

(4 k) e w-4. 

Proof: Suppose that i E F [ k ] .  It then follows that Ai,j = 0 for 1 5 j 5 k. Conse- 

quently, k < f ( i ) ,  which by Theorem 3.6 ensures that (i, k) $! U ( A ) .  

Lemma 3.8. If i E U [ k ] ,  then ( i , k )  n(A). 

Proof: Suppose that i E D[']. It follows that T ,  E dk], and thus we have f ( i )  < k. 
To show that (i, k) U ( A ) ,  it is sufficient accordiiig t o  Theorem 3.6 to  show that k is 

not an ancestor of f(i) in the elimination forest defined by p. 

Consider the symmetric positive definite matrix B = ATA and its Cholesky factor 

L.  Since A is strong Hall, we have (assuming no numerical cancellation) Struct(LT) = 
S t r u c t ( z )  = S h ~ c t ( R )  [l], whence p s  elimination forest and L's elimination forest 

are identical. Let G ( B )  = (dTZ],E') be the adjacency graph of B ,  i.e., the graph 

for which there is an edge joining c, and ct if and only if B,,t # 0. Here, C["] = 
( C I , C ~ , .  . . , c , }  is the same vertex set used t o  construct the bipartite graph BI"] in 

Section 2.3. Liu [36] has shown that for s < t ,  the vertex ct is an ancestor of c, in L's 
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elimination forest if and only if they are connected by a path in the subgraph of G ( B )  
induced by dt] = {cl, c2.. . . , c t }  (Lemma 2.3 in [IS]). 

Now, membership of i in Ill'"] implies that  there exists no path from ck to rj in the 

bipartite graph I?[k]. Since { T ~ , c ~ ( ~ ) }  E E [ k ] ,  there is also no path from c j ( ; )  to  ck in 

BIk]. Thus, to prove the result it suffices to show that the absence of a path from c j ( ; )  

t o  Ck in Blk] implies the absence of a path from c f ( ; )  to Ck in the subgraph of G ( B )  
induced by dk]. 

Toward that end, suppose that there is a path 

in G ( B )  such that s, < k for 1 5 p 5 T .  (Recall that  f ( i )  < I C ,  as well.) It is trivial to  

verify that G ( B )  is the graph on C["] with edge set E' consisting of precisely the edges 

necessary to make each vertex set {cj I j E Struct(A,, ,)} ,  1 5 i 5 m, a clique in the 

graph (Le., pairwise adjacent in the graph). Consequently, if { c , , c ~ }  E E' with s < t ,  

then there must exist some row i for which s, t E Struct(A;,,), and therefore (cs, T;, c t )  

is a path in Bit]. It follows that there exists a path 

in I?['] such that sp < k for 1 5 p 5 T and 1 5 t ,  5 rn for 1 5 p 5 r + 1. This 

concludes the proof. 

With these two results and the discussion preceding them we have proven the fol- 

lowing result. 

Theorem 3.9. For U ( A )  defined in Theorern 3.6, we have U(A)  = U ( A ) .  

The following result shows how the characterization maintains in a natural way the 

classification of zero entries for a strong Hall matrices from Hare et  al. [E]. 

Corollary 3.10. 

1. i E Flk] if and only if k < f ( i ) .  

2. i E Dfk] i f and  only if f( i)  < k and k is not an  ancestor o f f ( i )  in the elimination 

forest p . 

Proof: The proof follows immediately from Theorem 3.9 and the proofs of Lemma 3.7 
and Lemma 3.8. 

Finally, we have the following result for -?i(A). 
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Corollary 3.11. For R(A) defined as in Theorem 3.7, we have R(A)  = %(A).  

Proof: The result follows immediately from Theorem 3.9 and part (c) of Theorem 3.6. 

W 

4. Weak Hall matrices and block upper triangular forms 

We know of no way to  generalize the results of the previous section so that they apply 

to arbitrary Hall matrices. The proofs of those results depend on several properties of 

strong Hall matrices that do not hold for Hall matrices in general. This problem can be 

overcome however if one is willing to rearrange the rows and columns of the weak Hall 

matrix. One can always permute a given weak Hall matrix into block upper ts-iangular 

form so that each diagonal block has the strong Hall property [2,6,20]. (Permuting a 

weak Hall matrix into such a block upper triangular form is also known as the Dulmage- 

Mendelsohn decomposition.) The block upper triangular form essentially recaptures 

the properties of strong Hall matrices needed for our purposes. 

In Section 4.1 we briefly review the block upper triangular form. Section 4.2 adapts 

the characterization of Section 3.3 t o  obtain a characterization of R ( A )  and U(A) when 

A is any weak Hall matrix that is already in block upper triangular form. Finally, let 

A be a weak Hall matrix and let 2 be the same matrix after i t  has been permuted 

into block upper triangular form. Section 4.3 shows that the factors and k of 2 
incur no more fill than the factors U a.nd R of A.  

4.1. Definitions and notation 

Let A be a weak Hall matrix and without loss of generality assume that A has a 

zero-free diagonal. Then there exists an n x n permutation matrix P such that the 

matrix 

has the form 
h h 

where p 2 1, and for 1 5 s 5 p the submatrix Ais,+ is a square T~ x qs matrix that 

has the strong Hall property. The submatrix &l,p+l is an (qp+l + m - n)  x qp+l 

matrix that also has the strong Hall property. (In some instances Aptl,ptl may be 
- 
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a null matrix.) Note that 2 has the same nonzero diagonal entries as A, although 

they generally will appear in different positions. Note moreover that the block upper 

triangular form satisfying these properties is essentially unique and is independent of 

the choice of the zero-free diagonal [2,20]. 
Let cy : {1,2, .  . ., n}  -+ {1,2,. . . , n} be the permutation that maps each row (col- 

umn) index in A to  its new position in A.  For any respective row and column index 

pair i and j ,  we let i := a(i) and j := a ( j ) ,  so that Ai,j = Ai,j. To obtain the results in 

Section 4.3 we require moreover that the permutation a be consistent with the original 

ordering in the following sense. The individual columns within a block column of 2 
must occur in the same order in which they are found in A.  For example, for the first 

block column we must have 

- 
.. 

a'l(1) < 4 2 )  < a-1(3) < * * * < a-l(ql). 

While the ordering of individual columns within block columns is fixed by the original 

ordering, there is only one restriction on the ordering of the block columns themselves. 

When m > n, block column p + 1 must be composed of all the columns of A that  

belong to  no Hall set under any column ordering of A, if indeed such columns exist. 

If m = n or there are no such columns, then there is no restriction on the order of the 

block columns. 

4.2. Characterization of Q(2) for the block upper triangular form 

Suppose that 2 has the form shown in (4.1), and denote the QR factorization of 2 by 

i=Q[ R 

Let e moreover be the matrix consisting of the first n columns of a, and let 

be the Householder matrix for 2. It is well known that for general Hall matrices, 

the zero-nonzero patterns %(A) and R(A) generated by symbolic QR factorization 

using Givens rotations or Householder transformations may not be the same as "(2) 
and R(2)  respectively. However, Coleman et al. [l] have shown that ,  when applied 

to weak Hall matrices that are in block upper triangular form, the pattern R ( A )  
created by symbolic Q R  factorization using Givens rotations is indeed identical t o  

=(A). This result also holds when Householder transformations are used instead of 

Givens rotations. In this section we modify the characterization introduced in Section 3 

t o  obtain characterizations of Q(A>, U ( A ) ,  and W ( A ) ,  the last two of which are 

identical to  U(2) and %(2) respectively. 

- -  _ -  

- h  

_ A  _ h  - *  
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For convenience, define n, to be 

Note that n = np+l .  It should be obvious that the Hall columns ,!?$I and the Hall rows 

,!?E1 for 2 are given by 

{1,2, .. ., np-l} , if np-l 5 i 5 np - 1, I {1,2,. . . , np}  , if ny 5 k < np+l - 1. 

We now use Theorem 2.3 to  show that has the following form: 

h 

..._ 
0 0  

O = I  0 0  

. . .  

... 

. . .  

... 

.. 
0 
0 

7 

0 
(4.3) 

where E has been partitioned in the same manner as A. 

Lemma 4.1. An rn x n weak Hall matrix A in block upper triangular form (4.1) has 

an 171 x n orthogonal factor 6 in block diagonal form (4 .3) .  

P r o d  Consider any column j in 5 and let i;,j be an entry in one of the Q#- 

diagonal blocks of 2, so that n,-1 < i 5 11,  and nt-l < j 5 nt. If s > t ,  
then it follows from (4.1) that & c  = 0, for 1 5 ?j 5 j .  Consequently, i E F[jl and 

thus by Theorem 2.3, U;,j = 0. This observation applies to  every entry in A,,t, and 

hence Us,t = 0 for s > t .  If on the other hand s < t ,  it follows from (4.2) that  

?g-*’ = SR A’--11 = {1,2, .  . ., nt-l} + 0. Since s < t ,  we have i 5 n, 5 nt-1 and thus 

i E .?E-’]. It follows then from Theorem 2.3 that  6;,j = 0. Again, this observation 

A A 

h 

* h 

applies t o  every entry in As,t ,  and hence U,3,t = 0 for s < 1. 

It follows from Lemma 4.1 that  the problem of determining U(i) decomposes into 

finding U(&,,) based solely on St~ .uc t (&,)  for 1 5 s 5 p f  1. Since each submatrix 
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As,s is strong Hall, the techniques in Section 3.3 can be applied to  obtain a row-oriented 

characterization of U(&,8). 

It is also trivial to use the techniques of Section 3.3 to  include the last rn-n columns 

of Q in this characterization. It follows from (4.3) that the matrix Q 

following form: 

must have the 

(4.4) 

h 

where Vs,p+a is qs x ( m  - n) for 1 L: s 5 p ,  and pp+l,p+2 is ( T ~ + I  + rn - n)  x (rn - n). 

To ensure orthogonality in the last m - n columns of Q ,  we must have Vs,p+2 = 0 , l  _< 
s _< p ,  by an argument similar to  that in the second paragraph following Theorem 2.3. 

The row structure of V p + I , p + 2  can be obtained using the generalized elimination tree 

in Section 3.2. 

We now express these results in a form similar to  their analogues in Section 3.3. As 
in Section 3, we let f(i) be the column index of the first nonzero in row 2  ̂ of 2. The 

generalized elimination forest @ is defined in exactly the same way as in Section 3.2, 

using =(A) and the structure of the Householder vectors for the  TOO^^^ columns (in 

%(A)), However, we need to introduce the Hullfisnction 8, which is defined as follows. 

For column j of 2 belonging to  block column &,t (i.e., nt-1 < j 5 nt ) ,  we define 

8 ( j )  := nt. Thus, for 1 5 j 5 np ,  8( j )  is the column in whose Hall set column j first 

appears. For np < j L: rn, we define 8( j )  := 0. 

Corollary 4.2. 

A h 

h 

_.-. 
(a) For 1 5 i , j  5 rn, if ( i , j )  E Q(A) ,  then 

j f { f(9 7 $m)> ? 5Wm 7 * - .  7 t"C9 1 7 

where i(i) = 8(i)  or +(i(i)) = i(i>. 

(b)  For 1 5 i 5 rn and 1 5 j 5 n, ( i ,  j )  E ~ ( 2 )  if and only if 

j E { m I fi(f(i>) ? @(i j ( fG) ) )  9 . * - 9 t(i> 1 9  
where t(i) = d(i) or i)(t(i>> = t ( i ) .  

(c) %(A) = U(2) - { ( i , j )  I 1 5 j 5 n, 1 _< i < j } .  
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4.3. Minimality of fill in E and k 
The purpose of this section is to  explain the effects of permuting to block upper trian- 

gular form on the sparsity of the triangular and orthogonal factors. As noted earlier, 

reordering the rows of A has no influence on the sparsity of the triangular factor and 

merely permutes the rows of the orthogonal factor. Permuting the columns of A how- 

ever can dramatically change the amount of fill in either (or both) of the factors. In 

this subsection, again using the results in [15], we show that  when A is permuted into 

block upper triangular form in a fashion that is consistent with the original ordering 

of A (see Section 4.1 for the definition of a consistent ordering), then the sparsity of 

the factors will stay the same or improve. 

By direct application of the results in [15], we first prove that  the zeros in U are 
h 

preserved in U .  

Theorem 4.3. If U,,3 = 0, then Ui,j = 0. 

Proof: has a block diagonal form (4.3), and thus 

we can proceed as follows. Choose diagonal block A,,,, 1 5 s 5 p + 1, and let Ut,3 = 0 

be chosen so that 

h 

We showed in Section 4.2 that  .. 

ns-1 < a( i ) , a ( j )  5 n,. (4.5) 

It now suffices to  show that 6;,j = 0. To do so, we consider each of the three cases 

highlighted in the statement of Theorem 2.3. 

First, assume that i E FIJI. It follows that At,k = 0 for 1 5 k 5 j .  From (4.1), the 

only possible nonzero entries Â ;,z # 0 for 1 5 k 5 j occur within the diagonal block 

A,,,. However, since CY is a consistent ordering and At,k = 0 for 1 5 IC 5 j ,  it follows 

that .& = 0 for 1 5 k 5 j .  Consequently, 2  ̂ E p[jl and by Theorem 2.3, T?;,j I= 0 as 

desired. 

Second, assurne that i E dJ1. It then follows that r ,  E R[J] and T ,  is not reachable 

from c3 by any path in h'[Jl. To show that 6;j = 0, it suffices to  show that fi l j l  is 

isomorphic under the bijection CY t o  a subgraph of h'[Jl, for then f ;  will not be reachable 

from t j  by any path in @I. From (4.2), the only rows (columns) 1 5 k 5 j -  1 that are 

not in S,  ) are precisely those rows (columns) k for which ns-l < k < j .  

However, since the ordering CY is consistent with the original ordering and the submatrix 

As,, is strong Hall, it follows that for each such row (column) k of 2, the corresponding 

row (column) k of A is not in Sk-ll (= Si-']). Consequently, g[jl is isomorphic (under 

a) to  a subgraph of B[Jl,  as required. 

Lastly, we consider the possibility that i E Sfz-']. It follows directly from the 

argument in the preceding paragraph that if IC E Sk-ll, then k E ?E-']. Now (4.2) and 

(4.5) imply that i S,  , and hence i 6 ,"!-'I. Thus we do not have to consider this 

A 

-b-1] qj-11 
(= S ,  

-[j-11 
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possibility, and this concludes the proof. m 

We have shown that there can never be more nonzero entries in 6 than in U .  

Theorem 4.3 can be used to  establish a similar result for the upper triangular factor 

R* 

Corollary 4.4. If R;,j = 0, then &,j = 0. 

Proof: Assume that  &,j # 0. Since we can express &,j as 

m 

t= l  

it  follows that 6i,+ # 0 and i~,~ # 0 for some k ,  1 5 k 5 m. Clearly then Ak,j f 0. By 

Theorem 4.3, @L,+ f 0 implies that  Uk,i # 0. Proceeding under the usual assumption 

of no numerical cancellation, we have 

which proves the result. 

5 .  Concluding remarks 

In this paper, we have used a recent and complete sparsity analysis of Q R  factoriza- 

tion [15,19] to  provide a similarly complete extension and analysis of a well-known 

symbolic factorization procedure for sparse QR factorization [9,11]. For the purposes 

of this work, the key insight provided by Hare et al. [15] is the impact that  Hall rows 

and columns in A have on the sparsity of U .  Essentially, the role of the Hall sets (or 

the Hall function 8) in definiug the right profile of U is perfectly analogous to  the role 

of the function f(i)  in defining the left profile of U .  It should be noted that the efficient 

symbolic factorization algorithm in [ll] can be modified easily to  compute Q(A) and 

We have seen how the Hall sets and the interplay between orthogonality and sparsity 

disappear for strong Hall matrices. We demonstrated that the characterization of x(A) 
given in [9] is identical to "(A) .  We were able to extend the characterization to obtain 

a simple characterization of a(A) and prove that U(A)  = U ( A ) .  In the strong Hall 

case, we established that "(A) = U ( A )  - { ( i , j )  I 1 5 j 5 n , l  5 i < j } .  We were 

also able t o  link certain details of the analysis in [15] with certain features found in our 

structure characterization. 

a( A ) .  
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Though we were unable to  extend our techniques and analysis t o  weak Hall matrices 

in general, we are able to  do so for weak Hall matrices that have been permuted into 

block upper triangular form. We contend however that this is not a serious restriction. 

Efficient algorithms for finding a zero-free diagonal [3] and for permuting a matrix to 

block upper triangular form [5,20] have long been used by the sparse matrix research 

community. Moreover, we have shown here that permuting t o  block upper triangular 

form never increases the fill in orthogonal factorization, and may actually reduce it. 

So given an arbitrary Hall matrix, permuting it to block upper triangular form i s  both 

advisable and easily done. 

We know of few cases where explicit computation of the orthogonal factor U is 

required. There are however many options that fall between explicit computation of U 

and implicit computation of the orthogonal factor by computing H .  On advanced ar- 

chitectures, where blocked algorithms are so important for good performance, “partial” 

coinpiitation of U by multiplying together some but not all of the Householder trans- 

formations could be a valuable option. In this paper, we have provided a framework 

for exploring such possibilities. 
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